编程学习资讯网

MapReduce中map并行度优化及源码分析--编程学习网

发布时间:2017-07-11 08:52:19   来源:本站编辑   浏览次数:

mapTask并行度的决定机制

  一个job的map阶段并行度由客户端在提交job时决定,而客户端对map阶段并行度的规划的基本逻辑为:将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多个split),然后每一个split分配一个mapTask并行实例处理。

FileInputFormat切片机制

原文和作者一起讨论:http://www.cnblogs.com/intsmaze/p/6733968.html

微信:intsmaze(非诚勿扰)

1默认切片定义在InputFormat类中的getSplit()方法

2、FileInputFormat中默认的切片机制:

a) 简单地按照文件的内容长度进行切片

b) 切片大小,默认等于hdfs的block大小

c) 切片时不考虑数据集整体,而是逐个针对每一个文件单独切片

比如待处理数据有两个文件:

file1.txt    260M
file2.txt    10M

经过FileInputFormat的切片机制运算后,形成的切片信息如下:  

file1.txt.split1--  0~128 file1.txt.split2--  128~260 //如果剩余的文件长度/切片长度<=1.1则会将剩余文件的长度并未一个切片 file2.txt.split1--  0~10M

3、FileInputFormat中切片的大小的参数配置

通过分析源码,在FileInputFormat中,计算切片大小的逻辑:Math.max(minSize, Math.min(maxSize, blockSize)); 切片主要由这几个值来运算决定。

复制代码
minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize    

maxsize:默认值:Long.MAXValue  
    配置参数:mapreduce.input.fileinputformat.split.maxsize

blocksize:值为hdfs的对应文件的blocksize 配置读取目录下文件数量的线程数:public static final String LIST_STATUS_NUM_THREADS =
      "mapreduce.input.fileinputformat.list-status.num-threads"; 
复制代码

因此,默认情况下,Math.max(minSize, Math.min(maxSize, blockSize));切片大小=blocksize

maxsize(切片最大值):参数如果调得比blocksize小,则会让切片变小。

minsize(切片最小值):参数调的比blockSize大,则可以让切片变得比blocksize还大。

选择并发数的影响因素:

1、运算节点的硬件配置

2、运算任务的类型:CPU密集型还是IO密集型

3、运算任务的数据量

3、hadoop2.6.4源码解析

org.apache.hadoop.mapreduce.JobSubmitter类

复制代码
 //得到job的map任务的并行数量 private int writeSplits(org.apache.hadoop.mapreduce.JobContext job,
      Path jobSubmitDir) throws IOException,
      InterruptedException, ClassNotFoundException {
    JobConf jConf = (JobConf)job.getConfiguration(); int maps; if (jConf.getUseNewMapper()) { maps = writeNewSplits(job, jobSubmitDir); } else {
      maps = writeOldSplits(jConf, jobSubmitDir);
    } return maps;
  }
  
  @SuppressWarnings("unchecked") private <T extends InputSplit> int writeNewSplits(JobContext job, Path jobSubmitDir) throws IOException,
      InterruptedException, ClassNotFoundException {
    Configuration conf = job.getConfiguration();
    InputFormat<?, ?> input = ReflectionUtils.newInstance(job.getInputFormatClass(), conf);
     List<InputSplit> splits = input.getSplits(job); T[] array = (T[]) splits.toArray(new InputSplit[splits.size()]); // sort the splits into order based on size, so that the biggest // go first Arrays.sort(array, new SplitComparator());
    JobSplitWriter.createSplitFiles(jobSubmitDir, conf, 
        jobSubmitDir.getFileSystem(conf), array); return array.length;
  }
复制代码

 

切片计算逻辑,关注红色字体代码即可。

复制代码
public List<InputSplit> getSplits(JobContext job) throws IOException {
    Stopwatch sw = new Stopwatch().start(); long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job));
    long maxSize = getMaxSplitSize(job); // generate splits List<InputSplit> splits = new ArrayList<InputSplit>();   List<FileStatus> files = listStatus(job);
   //遍历文件,对每一个文件进行如下处理:获得文件的blocksize,获取文件的长度,得到切片信息(spilt 文件路径,切片编号,偏移量范围) for (FileStatus file: files) {
      Path path = file.getPath(); long length = file.getLen(); if (length != 0) {
        BlockLocation[] blkLocations; if (file instanceof LocatedFileStatus) {
          blkLocations = ((LocatedFileStatus) file).getBlockLocations();
        } else {
          FileSystem fs = path.getFileSystem(job.getConfiguration());
          blkLocations = fs.getFileBlockLocations(file, 0, length);
        } if (isSplitable(job, path)) { long blockSize = file.getBlockSize();
         long splitSize = computeSplitSize(blockSize, minSize, maxSize); long bytesRemaining = length; while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                        blkLocations[blkIndex].getHosts(),
                        blkLocations[blkIndex].getCachedHosts()));
            bytesRemaining -= splitSize;
          } if (bytesRemaining != 0) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
                       blkLocations[blkIndex].getHosts(),
                       blkLocations[blkIndex].getCachedHosts()));
          }
        } else { // not splitable splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
                      blkLocations[0].getCachedHosts()));
        }
      } else { //Create empty hosts array for zero length files splits.add(makeSplit(path, 0, length, new String[0]));
      }
    } // Save the number of input files for metrics/loadgen  job.getConfiguration().setLong(NUM_INPUT_FILES, files.size());
    sw.stop(); if (LOG.isDebugEnabled()) {
      LOG.debug("Total # of splits generated by getSplits: " + splits.size() + ", TimeTaken: " + sw.elapsedMillis());
    } return splits;
  }
复制代码

 

复制代码
 public static final String SPLIT_MINSIZE = 
    "mapreduce.input.fileinputformat.split.minsize"; public static final String SPLIT_MAXSIZE = 
    "mapreduce.input.fileinputformat.split.maxsize";  long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //保证切分的文件长度最小不得小于1字节 protected long getFormatMinSplitSize() { return 1;
  } //如果没有在conf中设置SPLIT_MINSIZE参数,则取默认值1字节。 public static long getMinSplitSize(JobContext job) { return job.getConfiguration().getLong(SPLIT_MINSIZE, 1L);
  } //得到切片文件的最大长度 long maxSize = getMaxSplitSize(job); //如果没有在conf中设置SPLIT_MAXSIZE参数,则去默认值Long.MAX_VALUE字节。 public static long getMaxSplitSize(JobContext context) { return context.getConfiguration().getLong(SPLIT_MAXSIZE, 
                                              Long.MAX_VALUE);
  } //读取指定目录下的所有文件的信息 List<FileStatus> files = listStatus(job); //如果没有指定开启几个线程读取,则默认一个线程去读文件信息,因为存在目录下有上亿个文件的情况,所以有需要开启多个线程加快读取。 int numThreads = job.getConfiguration().getInt(LIST_STATUS_NUM_THREADS,
        DEFAULT_LIST_STATUS_NUM_THREADS); public static final String LIST_STATUS_NUM_THREADS =
      "mapreduce.input.fileinputformat.list-status.num-threads"; public static final int DEFAULT_LIST_STATUS_NUM_THREADS = 1; //计算切片文件的逻辑大小 long splitSize = computeSplitSize(blockSize, minSize, maxSize); protected long computeSplitSize(long blockSize, long minSize, long maxSize) { return Math.max(minSize, Math.min(maxSize, blockSize));
  } private static final double SPLIT_SLOP = 1.1; // 10% slop //判断剩余文件与切片大小的比是否为1.1. while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) { int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
          splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                      blkLocations[blkIndex].getHosts(),
                      blkLocations[blkIndex].getCachedHosts()));
          bytesRemaining -= splitSize;
    }
复制代码

map并行度

  如果job的每个map或者reduce的task的运行时间都只有30-40秒钟(最好每个map的执行时间最少不低于一分钟),那么就减少该job的map或者reduce数。每一个task的启动和加入到调度器中进行调度,这个中间的过程可能都要花费几秒钟,所以如果每个task都非常快就跑完了,就会在task的开始和结束的时候浪费太多的时间。

  配置task的JVM重用可以改善该问题:
  (mapred.job.reuse.jvm.num.tasks,默认是1,表示一个JVM上最多可以顺序执行的task数目(属于同一个Job)是1。也就是说一个task启一个JVM)。

小文件的场景下,默认的切片机制会造成大量的maptask处理很少量的数据,效率低下:

解决方案:

  推荐:把小文件存入hdfs之前进行预处理,先合并为大文件后再上传。

  折中:写程序对hdfs上小文件进行合并再跑job处理。

  补救措施:如果大量的小文件已经存在hdfs上了,使用combineInputFormate组件,它可以将众多的小文件从逻辑上规划到一个切片中,这样多个小文件就可以交给一个maptask操作了。

   最近实在是不知道学点什么了呦,就把hadoop回顾一下,当初学时,为了快速上手,都是记各种理论以及结论,没有时间去看源码验证,也不知道人家说的结论是否正确,这次回滚就是看源码验证当初结论的正确性。这也快一年没有用了,最近一直从事分布式实时计算的研究。

编程学习网 http://www.javalearns.cn

关注微信号:javalearns   随时随地学Java

或扫一扫

随时随地学Java